

COMPUTER SOFTWARE INSTALLATION

Contents

TOPIC 1: INTRODUCTION TO SOFTWARE INSTALLATION ..cc.ooiiiiieieeeeeeee e 1
IDENTIFICATION OF SOFTWARE TO BE INSTALLED ...cc.ueiiiiiiieieeieeciee sttt 1
SOTEWATE ...ttt a bt s bt s b b e e e et e st e bt e bt e b e st et et e e et e e bt ebeenenren 1
ClasSIfICatioN OF SOFLWAIE........iiiiiieee ettt st sttt et e bt e s bt e sat e st e eateenee s 1
Criteria for SOftWare SEIECLION.......coi it 2
Software AcqUISItION IMETNOAScccviiie e e e e e et e e e e sata e e e e nbreeeesanaeeaean 2
(O] 1=] = LT AN VA K= 1 4 T P TP TSP U PRSP 3
TYPES Of OPErating SYSTEMS...cii it e e e see e e et ee e e s sabee e e ssabeeeeesabeeeeennreeas 5
Types of operating SystemM INtEITACESciii i e s e e s aeae e s enes 10

TOPIC 2: INSTALL COMPUTER SOFTWARE ..ottt 12
SOTtWArE INSTAIATION ..ttt b e bttt e et e be e sbeesaeenas 12
INSTANIATION MEAIA ..eoiiiiieie ettt st sttt r e e e e es 12
Types of software INStaAllatioNscoiiiiiii e e e e e e s earae e e enes 14
Software installation legal reqUIrEMENTS.ccciiiiiiee e e sebee e s nbeeas 15
Software installation and regiSTrationoccuiiiieiiiie e et e e rabe e e s e arae e e eareeas 17
N o] AN Tl =T d I { - 14 o) o PP 18
N o] AN Tl =T =41 - 14 o] o TP UPR 19
SOFtWAre CONFIGUIALION . ..eiiiiiieiee e e et e e st e e e s bt e e e e s abaeeeenbeeeeesseeeeennsenas 19
IMPORTANCE OF SOFTWARE REGISTRATIONcutiiiiiiiiiiiitente ettt ettt sttt ettt eeees 21

TOPIC 3: SOFTWARE CONFIGURATION MANAGEMENT ..ot 23
REASON FOR SOFTWARE CONFIGURATION......eiittiitteteenittnite st eieeste e st e sieesite st st beesbeesbeesmeesmeeeneeeneeas 24
Key Benefits and Importance of Software Configuration Management (SCM)......c..ccceveeeviveeiveeecreeennne. 24
SOftware iNStallation tESEINGvvii i e e s e e st e e s s abe e e e enbreeeenabeeas 26
Techniques Of SOfEWAre TESTING.....ccciiecieeeee ettt e et e st e et e e st e e sabeeessseeseeeeseeesnneeennes 27
INSTALLATION CHECKLIST ..ceeeeteeeeeeeittteee et e e ettt et e e e e ettt e e e e s e s aabeeeeeeeeeeesannnebeeeeeeeessanneseeeaeeesesannnnnes 28
TYPESs Of FUNCHIONAI LESTING.....viiieiee et e e s e e srt e e st e e e snteesseeenneeesnneeennes 29
Functional testing LECNIGUESuiii i et e e et e e e s bre e e s sbraeeesrraeeesanes 31
Functional teSting ChECKIISt......cic i e et e e e e b re e e e satae e e saraeeesanes 31

TOPIC 5: PERFORM USER TRAINING ..ottt sttt s 35
DEfiNitioN OF TEIMN ..ottt ettt e bt e s bt e st e st e et e e be e beesbeesbeesaeesabeeaeeas 35
Keys to successful implementation/ User training StEPS.....c.ecvvvevreeieereeiieere e e e esteesteeseeeeereeveerees 35

COMPUTER SOFTWARE INSTALLATION

Key Reasons for ENd USEr TraiNiNgcueeccieieiiieiiee et e siee e esteesteeesteeeteeessaeesnseeessseesnsasssseesnseeesnnes 36
TOPIC 6: PERFORM SOFTWARE MAINTENANCEccciiieeeee ettt 38
Develop a software maintenance SChEAUIE...........ooi i it e e e 38
SOFTWARE EVALUATION ...ttt ettt sttt ettt e sbe e saee st st e e e sbeesbeesaeeemteeteesbeesaeesanenas 39
SOFTWARE MAINTENANCE PROCEDURE.......outttitiiiiiiiteee ettt e e e ettt e e e e s s sinreeeee e e e s sanneeeeeeas 40
TYPES Of SOTtWArE MaAINTENANCEoeceeviiei ettt ettt ee ettt eee ettt e e e etreeeeeetbeeeeeesbeeeeesraeeesaaraeeesnes 41

Software

Software is a set of instructions, programs, or data used to operate computers and execute
specific tasks. It tells the hardware what to do and how to do it.

o Unlike hardware (the physical part of a computer), software is intangible.
o ltincludes all the applications, programs, and operating systems that run on
computers.

Examples: Microsoft Word, Windows OS, web browsers, antivirus programs.

Classification of Software
Software is generally divided into two main categories:
A. System Software

System software manages the hardware and provides a platform for other software to run. It acts
as a bridge between the hardware and the user.

Key Types:

e Operating systems (e.g., Windows, macQOS, Linux)

o Utility programs (e.g., antivirus, disk cleaners)

o Device drivers (e.g., printer or sound drivers)
Functions:

e Manages hardware components

« Controls system operations

o Facilitates communication between software and hardware
B. Application Software

Application software is designed to help users perform specific tasks.

Key Types:

COMPUTER SOFTWARE INSTALLATION

e Productivity software (e.g., MS Word, Excel)
e Web browsers (e.g., Chrome, Firefox)
e Media players (e.g., VLC)
o Games and simulations
Functions:

e Solves real-world problems
e Provides tools for communication, design, analysis, etc.

Criteria for Software Selection

When choosing software, it is essential to consider the following criteria:

| Criteria H Explanation \
Cost | Total cost of purchase, license, maintenance, and upgrades |
|Compatibility \Whether it works with existing hardware and software |
\User-Friendliness ||Ease of use, interface design, and required training |
[Functionality |Whether it meets the required tasks and features |
Reliability |Stable performance, minimal crashes, and bugs |
|Security ||Protection against threats and unauthorized access |
Scalability ||Ability to grow or adapt with increasing demands |
ISupport and Updates|/Availability of customer support, regular updates, and patches|
ILegal Compliance |[Proper licensing, adherence to industry standards and laws |

Software Acquisition Methods
A. Off-the-Shelf Software
This is commercially available software developed for general use, sold to many users.
Examples: Microsoft Office, Adobe Photoshop
Advantages:
o Ready to use immediately

o Cost-effective for general needs
e Well-tested and documented

COMPUTER SOFTWARE INSTALLATION

Disadvantages:

« Limited customization
e May include unnecessary features
e Licensing restrictions

B. Open Source Software

Open source software is software with source code freely available for use, modification, and
distribution.

Examples: Linux OS, LibreOffice, GIMP
Advantages:

e Free or low cost
e Customizable
e Community support

Disadvantages:

e May require technical expertise to modify or support
o Limited professional support
o Not always well-documented

Operating Systems

An Operating System (OS) is system software that manages computer hardware, software
resources, and provides services for computer programs.

Functions of an Operating System

1. Process management

e The OS manages all running programs, or ""processes," ensuring that each gets fair access
to the Central Processing Unit (CPU).

e Scheduling: The OS allocates CPU time to various processes using different algorithms,
like Round Robin, to manage multiple tasks and keep the CPU busy.

e Concurrency control: In a multitasking environment, the OS prevents processes from
interfering with each other and manages issues like deadlocks, where processes become
stuck waiting for one another.

2. Memory management

e This function involves controlling and coordinating the computer's memory to optimize

system performance.

COMPUTER SOFTWARE INSTALLATION

e Allocation and deallocation: The OS assigns memory to running programs and reclaims it
when the programs are finished.
e Memory protection: It prevents a process from accessing memory that has been allocated
to another process, which helps keep the system stable.
e Virtual memory: The OS can use disk space to extend the available memory, allowing the
computer to run applications larger than its physical RAM.
3. File system management
e The OS organizes, manages, and protects files and directories stored on disks and other
storage devices.
e File operations: It enables users and applications to create, delete, read, write, and modify
files.
e Hierarchical structure: It organizes files into a directory (folder) structure for efficient
navigation.
e Access control: The OS manages permissions to ensure that only authorized users or
applications can access and modify files.
4. Device management
e The OS manages communication between the computer and its hardware devices, also
known as peripherals.
e Device drivers: It uses specialized software, known as device drivers, to communicate
with devices like printers, keyboards, and mice.
e 1/O handling: The OS manages the flow of input and output data to and from various
devices.
e Spooling and buffering: It uses these techniques to handle data flow to slower devices,
such as printers, freeing up the CPU for other tasks.
5. User interface (Ul)
e The OS provides a way for users to interact with the computer. This can be:
e Graphical User Interface (GUI): A visual interface that uses icons, windows, menus, and
a mouse.
e Command-Line Interface (CLI): A text-based interface that requires users to type
commands.
6. Security and protection
e The OS protects the computer system and its resources from unauthorized access and
malicious activity.
e Authentication: It verifies user identity, typically through usernames and passwords.
e Access control: The OS enforces policies that restrict which users or applications can
access specific resources.
e Firewalls and encryption: It includes security measures to protect data and block
unauthorized access.
7. Other functions
e Booting: The OS manages the startup process when the computer is turned on, loading
the system software into memory.
e Error detection: It constantly monitors the system for potential errors and provides tools
for debugging and troubleshooting.
e Networking: The OS manages network connections and communication, allowing
devices to share resources.

COMPUTER SOFTWARE INSTALLATION

e Performance monitoring: It tracks system activities and resource consumption to help
optimize system performance.

Examples:

o Microsoft Windows

e macOS
e Linux

e Android
e« 1i0S

Types of Operating Systems

1. Batch Operating System

A Batch Operating System is designed to handle large groups of similar jobs efficiently. It does not
interact with the computer directly but instead processes jobs that are grouped by an operator. These jobs
are queued and executed one after the other, without user interaction during the process.

Advantages of Batch Operating System

o Efficient Job Management: Multiple users can efficiently share the system, making it cost-
effective.

e Minimal Idle Time: The system minimizes idle time by processing jobs in a continuous sequence
without human intervention.

e Handling Repetitive Tasks: Ideal for managing large, repetitive tasks, such as payroll and billing,
with minimal effort.

e Improved Throughput: Batch systems can handle high volumes of jobs at once, improving overall
system throughput.

Disadvantages of Batch Operating System

o Inefficient CPU Utilization: When a job is waiting for input/output (1/0O), the CPU remains idle,
leading to poor utilization of resources.

e Unpredictable Job Completion: If one job fails, others may be delayed indefinitely, making job
completion time unpredictable.

¢ Increased Response Time: The time between job submission and output can be high as all jobs
are processed sequentially.

e Lack of Real-Time Feedback: Users cannot interact with the system in real-time, making it less
suitable for interactive tasks.

Examples:

e Payroll Systems

https://www.geeksforgeeks.org/operating-systems/batch-processing-operating-system/

COMPUTER SOFTWARE INSTALLATION

e Bank Statements
2. Multi-Programming Operating System

In a Multi-Programming Operating System, multiple programs run in memory at the same time. The CPU
switches between programs, utilizing its resources more effectively and improving overall system
performance.

Advantages of Multi-Programming Operating System

e CPU is better utilized and the overall performance of the system improves.
o It helps in reducing the response time.

3. Multi-tasking/Time-sharing Operating systems

Multitasking OS is a type of Multiprogramming system with every process running in round robin
manner. Each task is given some time to execute so that all the tasks work smoothly. Each user gets the
time of the CPU as they use a single system. These systems are also known as Multitasking Systems. The
task can be from a single user or different users. The time that each task gets to execute is called quantum.
After this time interval is over, the OS switches over to the next task.

Advantages of Time-Sharing OS

e Each task gets an equal opportunity.

o Fewer chances of duplication of software.

e CPU idle time can be reduced.

e Resource Sharing: Time-sharing systems allow multiple users to share hardware resources such
as the CPU, memory and peripherals, reducing the cost of hardware and increasing efficiency.

e Improved Productivity: Time-sharing allows users to work concurrently, thereby reducing the
waiting time for their turn to use the computer. This increased productivity translates to more
work getting done in less time.

e Improved User Experience: Time-sharing provides an interactive environment that allows users
to communicate with the computer in real time, providing a better user experience than batch
processing.

Disadvantages of Time-Sharing OS

e Reliability problem.

e One must take care of the security and integrity of user programs and data.

e Data communication problem.

o High Overhead: Time-sharing systems have a higher overhead than other operating systems due
to the need for scheduling, context switching and other overheads that come with supporting
multiple users.

o Complexity: Time-sharing systems are complex and require advanced software to manage
multiple users simultaneously. This complexity increases the chance of bugs and errors.

e Security Risks: With multiple users sharing resources, the risk of security breaches increases.
Time-sharing systems require careful management of user access, authentication and
authorization to ensure the security of data and software.

Examples:

https://www.geeksforgeeks.org/operating-systems/multiprogramming-in-operating-system/
https://www.geeksforgeeks.org/operating-systems/multitasking-operating-system/

COMPUTER SOFTWARE INSTALLATION

e |BM VM/CMS
e TSO (Time Sharing Option
e Windows Terminal Services

4. Multi-Processing Operating System

A Multi-Processing Operating System is a type of Operating System in which more than one CPU is used
for the execution of resources. It betters the throughput of the System.

Advantages of a Multi-Processing Operating System

e It increases the throughput of the system as processes can be parallelized.
e As it has several processors, so, if one processor fails, we can proceed with another processor.

5. Distributed Operating System

Distributed operating systems are a recent advancement in the world of computer technology and are
being widely accepted all over the world and, that too, at a great pace. Various autonomous
interconnected computers communicate with each other using a shared communication network.
Independent systems possess their own memory unit and CPU. Systems. These systems' processors differ
in size and function. The major benefit of working with these types of operating systems is that it is
always possible that one user can access the files or software which are not present on his system but on
some other system connected within this network, i.e., remote access is enabled within the devices
connected to that network.

Advantages of Distributed Operating System

o Failure of one will not affect the other network communication, as all systems are independent of
each other.

o Electronic mail increases the data exchange speed.

e Since resources are being shared, computation is highly fast and durable.

e Load on host computer reduces.

e These systems are easily scalable as many systems can be easily added to the network.

e Delay in data processing reduces.

Disadvantages of Distributed Operating System

e Failure of the main network will stop the entire communication.

e To establish distributed systems, the language is not yet well-defined.

e These types of systems are not readily available as they are very expensive. Not only that the
underlying software is highly complex and not understood well yet.

Issues with Distributed Operating System

o Networking causes delays in the transfer of data between nodes of a distributed system. Such
delays may lead to an inconsistent view of data located in different nodes and make it difficult to
know the chronological order in which events occurred in the system.

e Control functions like scheduling, resource allocation and deadlock detection have to be
performed in several nodes to achieve computation speedup and provide reliable operation when
computers or networking components fail.

o Messages exchanged by processes present in different nodes may travel over public networks and
pass through computer systems that are not controlled by the distributed operating system. An

7

https://www.geeksforgeeks.org/operating-systems/difference-between-multiprocessing-and-multiprogramming/
https://www.geeksforgeeks.org/operating-systems/what-is-a-distributed-operating-system/
https://www.geeksforgeeks.org/computer-organization-architecture/difference-between-loosely-coupled-and-tightly-coupled-multiprocessor-system/

COMPUTER SOFTWARE INSTALLATION

intruder may exploit this feature to tamper with messages or create fake messages to fool the
authentication procedure and masquerade as a user of the system.

Examples:
e LOCUS
MICROS
Amoeba

6. Network Operating System

These systems run on a server and provide the capability to manage data, users, groups, security,
applications and other networking functions. These types of operating systems allow shared access to
files, printers, security, applications and other networking functions over a small private network. One
more important aspect of Network Operating Systems is that all the users are well aware of the underlying
configuration, of all other users within the network, their connections, etc. and that’s why these computers
are popularly known a tightly coupled systems.

Advantages of Network Operating System

e Highly stable, centralized servers.

e Security concerns are handled through servers.

o New technologies and hardware upgrades are easily integrated into the system.
e Server access is possible remotely from different locations and types of systems.

Disadvantages of Network Operating System

e Servers are costly.
e The user has to depend on a central location for most operations.
e Maintenance and updates are required regularly.

Examples:

e Microsoft Windows Server 2003
e Microsoft Windows Server 2008
e UNIX, Linux

e MacOSX

e Novell NetWare

7. Real-Time Operating System

These types of OSs serve real-time systems. The time interval required to process and respond to inputs is
very small. This time interval is called response time. Real-time systems are used when there are time
requirements that are very strict like missile systems, air traffic control systems, robots, etc.

Types of Real-Time Operating Systems

Hard Real-Time Systems: Hard Real-Time OSs are meant for applications where time constraints are
very strict and even the shortest possible delay is not acceptable. These systems are built for saving lives
like automatic parachutes or airbags which are required to be readily available in case of an accident.
Virtual memory is rarely found in these systems.

Soft Real-Time Systems: These OSs are for applications where time is less strict.

8

https://www.geeksforgeeks.org/computer-organization-architecture/difference-between-loosely-coupled-and-tightly-coupled-multiprocessor-system/

COMPUTER SOFTWARE INSTALLATION

Real-Time Operating System

Advantages of RTOS

Maximum Consumption: Maximum utilization of devices and systems, thus more output from all
the resources.

Task Shifting: The time assigned for shifting tasks in these systems is very less. For example, in
older systems, it takes about 10 microseconds to shift from one task to another and in the latest
systems, it takes 3 microseconds.

Focus on Application: Focus on running applications and give less importance to applications that
are in the queue.

Real-time operating system in the embedded system: Since the size of programs is small, RTOS
can also be used in embedded systems like in transport and others.

Error-Free,: These types of systems are error-free.

Memory Allocation: Memory allocation is best managed in these types of systems.

Disadvantages of RTOS

Limited Tasks: Very few tasks run at the same time and their concentration is very less on a few
applications to avoid errors.

Use heavy system resources: Sometimes the system resources are not so good and they are
expensive as well.

Complex Algorithms: The algorithms are very complex and difficult for the designer to write.
Device driver and interrupt signals: It needs specific device drivers and interrupt signals to
respond earliest to interrupts.

Thread Priority: It is not good to set thread priority, as these systems are much less prone to
switching tasks.

Examples:

Scientific experiments
Medical imaging systems
Industrial control systems
Weapon systems

Robots

Air traffic control systems

8. Mobile Operating Systems

Mobile operating systems are designed specifically for mobile devices such as smartphones and tablets.
Examples of such operating systems are Android and iOS. These operating systems manage the hardware
and software resources of the device, providing a platform for running applications and ensuring a
seamless user experience.

Advantages of Mobile Operating Systems

User-Friendly Interfaces: Mobile operating systems are designed to be intuitive and easy to use,
making them accessible to a wide range of users.

o

o

COMPUTER SOFTWARE INSTALLATION

e Extensive App Ecosystems: The availability of a vast number of applications allows users to
customize their devices to meet their specific needs.

o Connectivity Options: Mobile operating systems support multiple connectivity options, enabling
users to stay connected wherever they go.

o Regular Updates: Mobile operating systems receive regular updates, including new features,
security patches and performance improvements.

Disadvantages Mobile Operating Systems

e Battery Life Constraints: Despite advancements in power management, battery life remains a
challenge for mobile devices, especially with heavy usage.

e Security Risks: Mobile devices are susceptible to various security threats, such as malware and
phishing attacks, which can compromise user data.

e Fragmentation: In the case of Android, the wide range of devices and customizations can lead to
fragmentation, making it difficult for developers to ensure compatibility across all devices.

o Limited Hardware Resources: Mobile devices have limited processing power, memory and
storage compared to desktop computers, which can affect the performance of resource-intensive
applications.

Types of operating system interfaces

1. Command-Line Interface (CLI)

A CLI is a text-based interface where users type commands into a prompt to interact with the
system.

Key characteristics:

« Efficiency: Once a user is familiar with the commands, they can perform tasks quickly
and automate repetitive actions using scripts.

e Low resource usage: CLlIs are lightweight and require minimal system resources, making
them ideal for servers and older computers.

e Precision and control: They offer more granular control over an operating system's
functions than a GUI.

« Memorization required: Users must memorize a set of specific commands and their
syntax, which can be a barrier for beginners.

Examples:
Windows Command Prompt (cmd.exe)

Linux/macOS Terminal shells (e.g., Bash, Zsh)

10

COMPUTER SOFTWARE INSTALLATION

2. Graphical User Interface (GUI)

A GUI allows users to interact with a computer using visual elements like windows, icons,
menus, and a pointer. It is also known as a WIMP (Windows, Icons, Menus, Pointer) interface.

Key characteristics:

o User-friendly: GUIs are intuitive and do not require users to memorize commands.

e Visual cues: The visual elements represent files and commands in a clear and easy-to-
understand way, like a trash can icon for deleted files.

o High resource usage: GUIs require more memory and processing power than CLIs.

Examples:

e Microsoft Windows
e Apple macOS
o Mobile interfaces like Android and i0OS

3. Menu-Driven Interface

This interface presents users with a series of lists or options from which they can make selections
to navigate through a system.

Key characteristics:

« Intuitive navigation: Menus logically group functions, making it easier for novice users to
find what they need.

e Reduced errors: By providing a limited set of options, this interface minimizes user
mistakes.

o Can be slow: For advanced users, navigating through multiple menu levels can be slower
than using a direct command.

Examples:

o Bank automated teller machines (ATMs)
e In-car entertainment and navigation systems
e Older mobile phones

11

COMPUTER SOFTWARE INSTALLATION

Software installation

Software installation is the process of setting up a program on a computer system so it can be
executed and used effectively. This involves copying the necessary files and data from the
installation source to the computer's local storage and configuring the software to work correctly
with the operating system.

While some simple, portable programs can be run by just copying them to a folder, most
software requires a formal installation procedure. This is typically managed by a specialized
program called an installer, which guides the user through the process.

Key steps in software installation
The process is different for each program and operating system, but common steps include:

Checking system requirements: The installer first ensures that the computer has the necessary
hardware (e.g., adequate processor speed, RAM, and disk space) and software (e.g., a compatible
operating system) to run the program.

Running the installer: The user launches an executable file (e.g., an .exe file on Windows) or a
package manager to start the setup process.

Accepting license agreements: The user is typically required to agree to an End-User License
Agreement (EULA) before proceeding.

Customizing installation settings: The installer may offer options to the user, such as choosing
the installation location or selecting which components to install.

Copying and generating files: The installer copies the program files to the designated folders on
the computer and unpacks any compressed data.

Configuring the software: The process can involve adding or modifying configuration data, such
as registry entries on Windows or configuration files on Linux.

Creating access points: The installer adds shortcuts, icons, or links to the program on the
desktop, Start Menu, or application launcher.

Registering components: System components that need to run automatically, such as daemons or
services, are configured.

Activating the product: In some cases, product activation or registration is required to verify
legitimacy.

Installation media

12

COMPUTER SOFTWARE INSTALLATION

Installation media is a portable storage device, such as a USB flash drive or DVD that contains
all the necessary files to install or reinstall an operating system (OS). A system is booted from
the installation media to start the installation process.

There are two main categories of software installation media: physical media, which relies on a
tangible storage device, and digital media, which uses network connections and software files.

1. Physical installation media

Physical media was the standard for software distribution for decades and includes several types
of tangible storage devices.

Optical discs: CDs and DVDs were the most common format for distributing software and
operating systems from the 1990s through the late 2000s. Installation was performed by inserting
the disc into a computer's optical drive.

USB flash drives: These are a portable, easy-to-use option for storing and installing software.
Many modern computers no longer include an optical drive, making USB drives a popular
choice for creating bootable installation media for operating systems.

External hard drives: With larger capacities than flash drives, external hard drives can store
installation files for multiple programs or entire operating systems. This method offers excellent
portability and ample storage.

Tape cartridges: Though rare for consumer software, magnetic tape is still used for enterprise-
level backups and large software installations. This is generally seen in specific data center or
server environments.

2. Digital installation media
Digital distribution is the most common and convenient method for software installation today.

e Online downloads: Software is downloaded from the internet, usually from an official
website or a trusted third-party platform. Downloaded installers are typically an
executable file (.exe on Windows) that a user runs to begin the installation.

o ISO files: An ISO file is a disk image that contains all the data from a CD or DVD. It can
be used to create bootable physical media, such as a USB drive, or can be mounted
virtually to perform an installation.

e Cloud-based installers: This method is increasingly common for both operating systems
and applications.

e Online installers (web installers): A small program is downloaded from the internet and
then downloads the rest of the required files during the installation process.

« Direct from the cloud: Some software, especially SaaS (Software as a Service) products,
can be accessed and used directly from a web browser without any local installation.

o Network installation: A common method for businesses and schools where a system
administrator installs software from a central server to multiple client computers over a
network.

o Digital storefronts: Operating system-specific app stores, such as the Microsoft Store and
the Mac App Store, simplify the process of finding, purchasing, and installing
applications

13

COMPUTER SOFTWARE INSTALLATION

Types of software installations

A software installation is the process of making a computer program available for use on a
device

. The installation method varies depending on the software, the operating system, and the user's
needs. Common installation types can be categorized by the level of user interaction, deployment
method, and the nature of the installation itself.

By user interaction

Attended installation: This traditional method requires a user to manually interact with a setup
wizard, clicking through prompts to accept license agreements, choose installation locations, and
select features. This is most common for individual users installing software on a personal
compulter.

Unattended installation: The installation process runs automatically without user interaction or
presence. Before the installation begins, all necessary inputs are provided via a configuration file.
It is often used by system administrators to automate deployments across a large number of
systems.

Silent installation: A specific type of unattended installation that does not display any messages,
windows, or wizards while running in the background. While all silent installations are
unattended, not all unattended installations are silent. It is used for seamless deployment in
corporate and educational environments.

By deployment method

Local installation: The software is installed directly from a physical medium (like a CD or USB
drive) or a downloaded file onto a single computer's hard drive.

Network installation: The software is installed from a shared network resource, such as a
company server. This centralizes the installation files and allows administrators to easily deploy
and manage software for multiple users across an organization.

Web-based (online) installation: The installer is downloaded from the internet and pulls the
necessary files during the installation process. This ensures that the user receives the latest
software version. Many modern applications and web-based apps can also be run directly from a
browser without a local installation.

Package manager installation: Used primarily in Linux and other open-source environments, a
package manager is a tool that automates the entire installation process. It downloads software
from a central repository, handles dependencies (other software a program relies on), and keeps

all packages updated. Examples include apt (Debian/Ubuntu) and yum (Red Hat).

By installation nature

14

COMPUTER SOFTWARE INSTALLATION

Clean installation: This involves formatting and completely erasing a disk partition before
installing a fresh copy of the operating system or application. A clean install is often done to
resolve persistent software issues, remove clutter, and ensure a pristine, high-performing system.

Custom installation: During this interactive process, an advanced user can select which specific
components or features to install. This is useful for saving disk space or for installing only the
necessary parts of a software suite.

Virtual installation: Software is installed within a virtual machine (VM), which is an isolated,
software-based environment running on a host operating system. This is useful for testing,
development, and running incompatible or legacy software without affecting the host system.

Portable installation: Portable software does not need a formal installation process. The program
can simply be copied to a removable storage device, like a USB flash drive, and run on any
compatible computer. It does not modify system files or the Windows Registry.

Automated/Scheduled installation: An installation that is scheduled to run at a predefined time or
under specific conditions. This is useful for system administrators to perform updates or install
software outside of working hours.

Software installation legal requirements

Software installation legal requirements involve adhering to End-User License Agreements
(EULAS), respecting intellectual property (IP), and complying with relevant data privacy laws.
Both individuals and organizations must follow these rules, but the complexity increases for
businesses with multiple installations and sensitive data.

Licensing and EULAS

The End-User License Agreement is the most direct and crucial legal requirement for software
installation.

Key concepts

License vs. sale: Installing software means licensing it for use, not buying it. The EULA is a
legally binding contract between the licensor and licensee that grants this right.

Click-wrap agreements: Modern software requires accepting the EULA by clicking "I Agree”
during installation. This is a legally enforceable way to obtain consent. Failing to agree prevents
installation.

Enforceability: EULAs are generally enforceable in court if clearly presented and agreed to by
the user. "Unconscionable™ or "ridiculous™ terms that no reasonable person would agree to may
be an exception.

Consequences of violation: Breaching an EULA can lead to license termination, financial
penalties, and, in severe cases like piracy, criminal charges.

Important clauses in EULAS

15

COMPUTER SOFTWARE INSTALLATION

Grant of license: Specifies the license scope, including personal or commercial use, and limits on
users or devices.

Restrictions on use: Prohibits actions like reverse engineering, unauthorized copying, or
modifying the software.

Intellectual property rights: States that the software's code, design, and other IP belong to the
developer.

Warranty disclaimer: Limits the developer's liability by stating the software is provided "as is,"
without guarantees of functionality or performance.

Liability limitations: Restricts the types and amount of damages a user can recover in case of a
software failure.

Governing law: Designates the jurisdiction whose laws will govern the agreement in the event of
a dispute.

Termination: Outlines conditions for license revocation, often if the user violates the terms.

Intellectual property rights
Beyond the EULA, general intellectual property laws protect software developers.

Copyright: Software code is automatically protected by copyright upon creation, giving the
author exclusive rights to reproduce, modify, and distribute the work. Licensing agreements
control how the user can exercise these rights.

Patents: In some jurisdictions, the underlying inventive processes or algorithms within software
can be protected by a patent, offering broader protection than a copyright by covering the idea
itself, not just its expression in code.

Trade secrets: Developers protect proprietary code, formulas, and confidential information not
publicly known through trade secret law. EULASs often include non-disclosure clauses to protect
this information.

Data privacy and security

Software that collects, stores, or processes personal data must comply with data protection
regulations, such as the EU's General Data Protection Regulation (GDPR) and Kenya's Data
Protection Act (DPA).

Obligations for software installation

Consent: When installing software, users must be informed about the data being collected and
give explicit consent for processing.

Purpose limitation and data minimization: Data controllers must collect personal data for
specified, legitimate purposes and limit it to what is necessary.

16

COMPUTER SOFTWARE INSTALLATION

Security measures: Regulations require software installations and processes to implement
technical safeguards like encryption to protect personal data from unauthorized access.

Breach notification: In a data breach involving personal data, organizations may have a legal
obligation to notify affected users and regulatory bodies.

Data transfers: Transferring personal data outside its country of origin is highly regulated and
often requires proof of adequate protection measures.

Corporate and organizational compliance

For businesses, software installation legal requirements are more complex and heavily
scrutinized, particularly during compliance audits.

Internal policies: Organizations must implement internal IT policies defining permissible
software, who can install it, and under what conditions. This helps prevent unauthorized
installations that introduce security risks or licensing issues.

Software audits: Software vendors or third parties can initiate compliance audits to ensure a
company's usage aligns with its license agreements. Audits can be triggered by factors like a
decrease in spending or company growth that doesn't match license purchases.

Software asset management (SAM): Companies should use SAM practices and tools to maintain
an accurate inventory of all installed software and its associated licenses. This proactive measure
helps avoid non-compliance and the resulting penalties.

Consequences of corporate non-compliance: If a business fails a software audit, it may face
financial penalties, retroactive fees for under-licensed software, and reputational damage.

Software installation and registration

Software installation is the process of setting up a program on a computer, while software
registration is an optional, but sometimes mandatory, process of providing user information and
activating a license

Software installation

Installation involves copying program files and configuring settings to ensure the software runs
correctly on a device.

Common installation methods:

Standard installation: A wizard-based installer guides the user through the process step-by-step.
This is the most common method for desktop applications.

Silent or unattended installation: This automated method does not require user interaction and is
often used by IT administrators for deploying software across many computers.

17

COMPUTER SOFTWARE INSTALLATION

Portable installation: The software runs from a removable storage device, like a USB drive,
without being installed on the computer's hard drive.

Network installation: A server-based method that allows multiple users to install the software
from a shared network location.

Cloud-based or web application: These applications are accessed through a web browser and do
not require a local installation on the device.

Before you install:

Check system requirements: Verify that your computer's hardware and operating system meet
the software's minimum requirements.

Back up your data: Create a backup of your important files before installing new software,
especially if it is a major update.

Use trusted sources: Download software only from the developer's official website or authorized
vendors to avoid malicious programs.

Close other applications: Shutting down other programs can prevent conflicts during the
installation process.

. Obtain the license key: For paid software, have your license key or serial number ready before
you begin.

Typical installation steps:

Run the installer: Double-click the downloaded file (e.g., .exe for Windows or .dmg for macOS)
to start the process.

Follow the wizard: Proceed through the on-screen prompts, which may include:
Reading and accepting the End-User License Agreement (EULA).

Choosing the installation location.

Selecting a "Typical" or "Custom" installation.

Complete the process: Wait for the installation to finish and restart your computer if prompted.

Software registration

Registration and activation are often confused but serve different purposes. Registration is
typically optional, while activation is usually mandatory for unlocking full software
functionality.

Software activation

This process verifies that a user's right to use the software is valid.
18

COMPUTER SOFTWARE INSTALLATION

It protects against unauthorized copying and ensures the license is not used on more devices than
permitted.

It may require entering a unique activation code, license key, or signing in to a user account.

Many activation systems require an internet connection for online verification.

Software registration

This process involves providing personal or company information to the software developer.

It allows the company to offer better customer support, send software updates, or offer marketing
communications.

Registration may be required to access certain product features or use the software for
commercial purposes.

For software developers, formal copyright registration can legally establish ownership of the
code.

Software configuration

Software configuration is a broad concept encompassing the process of defining, arranging, and
managing the various settings, versions, and dependencies that make up a software system

. For development teams, this is handled through a practice called Software Configuration
Management (SCM).

Software Configuration Management (SCM)

SCM is a formal, systematic process that tracks and controls changes throughout the software's
entire lifecycle. It ensures consistency, integrity, and traceability, which is especially important
for complex projects with multiple developers.

The SCM process typically includes these key components:

Configuration identification: The process of breaking down a software system into manageable,
trackable components, or Configuration Items (CIs). Cls can be source code, documentation,
scripts, and other project artifacts.

Version control: The practice of tracking and managing changes to files over time, preventing
conflicts when multiple team members are working on the same codebase. This allows
developers to roll back to previous versions if needed.

Change control: A formal process for requesting, evaluating, and approving or denying changes
to baselined Cls. This prevents uncontrolled or unauthorized modifications.

Configuration status accounting: The recording and reporting of all changes made to Cls,
creating a detailed audit trail of the project's evolution.

19

COMPUTER SOFTWARE INSTALLATION

Configuration audits: Systematic reviews to verify that the software's current state aligns with its
documented requirements and established baselines.

Software configuration files

These are files that store the settings and parameters used by an application, allowing its
behavior to be adapted to a specific environment or user.

Format: They can take many forms, from simple plain-text formats like .ini or .cfg to more
structured formats like JSON or YAML.

Application settings: Configuration files are commonly used for settings that are not meant to
change dynamically, such as database connection strings, external API keys, or hostname
specifications.

Infrastructure as Code (1aC): In modern DevOps practices, configuration is often codified into
files (e.g., using Terraform or Ansible) to provision and manage infrastructure in a standardized,
automated, and repeatable way.

Tools for software configuration
A variety of tools automate and manage the software configuration process:

Version Control Systems (VCS): Tools like Git and Subversion (SVN) are used to track changes
to source code and other files.

Build Servers: Automated servers like Jenkins or TeamCity compile, build, and test software
applications as changes are committed, which helps with continuous integration and deployment.

Configuration Management Platforms: Specialized tools such as Puppet, Chef,
and Ansible automate the deployment and configuration of applications and infrastructure across
multiple servers and environments.

Containerization Tools: Technologies like Docker allow applications to be packaged with their
dependencies into isolated containers, ensuring consistent runtime environments.

The benefits of managing software configuration

Consistency: Ensures that all team members are working on the same version of the code and
that all environments (development, testing, and production) are configured consistently.

Reliability: Reduces the risk of errors and system failures by controlling changes and providing a
clear process for testing new configurations.

Collaboration: Allows multiple developers to work on a project simultaneously without
overwriting each other's work.

Traceability: Provides a complete history of all changes, making it easier to troubleshoot
problems or audit compliance.

20

COMPUTER SOFTWARE INSTALLATION

Automation: Reduces manual, error-prone tasks by codifying and automating configuration
processes, which is essential for scaling complex systems.

IMPORTANCE OF SOFTWARE REGISTRATION

Software registration is important because it

Provides legal protection and significant business advantages for developers and companies.
While copyright protection for original code exists automatically, formal registration establishes
a public ownership record that strengthens your legal position and enhances credibility.

Intellectual property protection

Legal recourse: Registration is often a prerequisite for filing an infringement lawsuit in federal
court. This allows you to take legal action against unauthorized copying, use, or distribution of
your software.

Proof of ownership: A registration certificate serves as an official public record and provides
strong evidence of ownership in court. This is crucial for resolving disputes over authorship or
plagiarism.

Enhanced damages: Timely registration makes you eligible for statutory damages and attorney's
fees in an infringement case. Without registration, you can typically only recover actual
damages, which may be harder to prove and insufficient to cover your costs.

International protection: In many countries, registration is recognized internationally due to
treaties like the Berne Convention, providing legal standing in foreign courts.

Commercial and business benefits

Increased asset value: Registered intellectual property (IP), including software copyrights, is
considered a tangible asset that increases the overall value of your business. This makes the
company more attractive to investors, potential buyers, and partners.

Licensing and monetization: Registration provides formal proof of ownership that simplifies the
process of creating licensing agreements with third parties. This can generate significant revenue
through royalties and licensing fees.

Credibility and trust: Formal registration demonstrates professionalism and security to clients,
investors, and suppliers. For sales, especially to other businesses, it provides the necessary
documentation to satisfy procurement requirements.

Secure funding: Investors often look for businesses with clearly defined and protected assets.
Registered IP reassures investors that their investment is secure and legally protected.

Government contracts: Some public tenders and government contracts require a software
registration certificate as proof of ownership.

Additional organizational advantages

21

COMPUTER SOFTWARE INSTALLATION

o Internal tracking: Internal software registration and license management systems allow
businesses to track how software is used within the organization. This helps ensure regulatory
compliance and avoids unnecessary costs from unused or redundant licenses.

« Enhanced customer support: For end-users, registering software can unlock access to support
cases, personalized product information, and other resources.

« Brand protection: Registering a trademark for your software's name or logo provides legal
protection and reinforces your brand identity in the marketplace.

22

COMPUTER SOFTWARE INSTALLATION

The key components of a software configuration management (SCM) system are the processes
and tools used to manage and track the development life cycle of software. These components
ensure that changes are controlled, documented, and properly implemented by all members of a
development team

Configuration ldentification

Purpose: To define and label all software elements that need to be managed throughout their
lifecycle.

Includes: Identifying configuration items (CIs), such as source code, documents, user manuals,
and installation guides, and establishing relationships between them.

Key Activity: Creating baselines—approved versions of configurations—that serve as a basis
for future changes.

Confiqguration Control

Purpose: To manage and regulate changes to configuration items in a consistent and structured
way.

Includes: Establishing a formal process for submitting, reviewing, and approving changes, often
involving change requests and authorization.

Goal: To ensure that any modifications to the system adhere to the baseline and do not
negatively impact its functionality.

Configuration Status Accounting

Purpose: To maintain records of all configuration items and changes.

Includes: Recording the status of each configuration item, including its version, release history,
and any implemented changes.

Role: To provide clear and accessible information for status reporting and traceability.

Confiquration Auditing

Purpose: To verify that the software and its components meet the defined functional and
performance requirements and that all configuration processes are followed correctly.

Includes:

Verification: Confirming the accuracy of the documentation and that the software functions as
intended.

Audits/Reviews: Conducting formal checks to ensure the software's configuration conforms to
the desired state and standards.

23

https://www.google.com/search?q=Configuration+Identification&oq=software+configuration+components&gs_lcrp=EgZjaHJvbWUqDggAEEUYJxg7GIAEGIoFMg4IABBFGCcYOxiABBiKBTIICAEQABgWGB4yCAgCEAAYFhgeMggIAxAAGBYYHjIICAQQABgWGB4yCAgFEAAYFhgeMggIBhAAGBYYHjIICAcQABgWGB4yCAgIEAAYFhgeMg0ICRAAGIYDGIAEGIoF0gEHNTc1ajBqN6gCALACAA&sourceid=chrome&ie=UTF-8&mstk=AUtExfBxaQUe5hEIxciMn_E2N-_-q2LVmuIRczzXtgJfVBPk66jo5mCe1JXzVDQ4Qw5TyJd-5dHykyYhEzHQ-SUC6W7__MKjKXHV7AvFrqc7JJ3KiU3Tz4-Aa6fXfCZRo0syzlNdOVWtoblwxl7wHU4gHUPkHEfpIk51HUxEco5BOfTmCyZpOMThAJMuR9sVkd71g8ZVKNLw6Uzah73r9FH6wH8K9DUr1z-s-lX8GSyrbefGG19dYert8wIZFKPF02rkNssb8gIPB3Zv8GLLKLO7VuYpm6mM89XkWKGfQWSOOq4CbTBdkQD_-8BV5WjNO2_50cnjrV5c7tTkegWV-s6qyqollcNyk7T15ewW-QdZeRUQg6azcy6ah0Um5jIBMU5cBA&csui=3&ved=2ahUKEwj7qLnOmM6PAxXU6wIHHYRVJJsQgK4QegQIBRAB
https://www.google.com/search?q=configuration+items&oq=software+configuration+components&gs_lcrp=EgZjaHJvbWUqDggAEEUYJxg7GIAEGIoFMg4IABBFGCcYOxiABBiKBTIICAEQABgWGB4yCAgCEAAYFhgeMggIAxAAGBYYHjIICAQQABgWGB4yCAgFEAAYFhgeMggIBhAAGBYYHjIICAcQABgWGB4yCAgIEAAYFhgeMg0ICRAAGIYDGIAEGIoF0gEHNTc1ajBqN6gCALACAA&sourceid=chrome&ie=UTF-8&mstk=AUtExfBxaQUe5hEIxciMn_E2N-_-q2LVmuIRczzXtgJfVBPk66jo5mCe1JXzVDQ4Qw5TyJd-5dHykyYhEzHQ-SUC6W7__MKjKXHV7AvFrqc7JJ3KiU3Tz4-Aa6fXfCZRo0syzlNdOVWtoblwxl7wHU4gHUPkHEfpIk51HUxEco5BOfTmCyZpOMThAJMuR9sVkd71g8ZVKNLw6Uzah73r9FH6wH8K9DUr1z-s-lX8GSyrbefGG19dYert8wIZFKPF02rkNssb8gIPB3Zv8GLLKLO7VuYpm6mM89XkWKGfQWSOOq4CbTBdkQD_-8BV5WjNO2_50cnjrV5c7tTkegWV-s6qyqollcNyk7T15ewW-QdZeRUQg6azcy6ah0Um5jIBMU5cBA&csui=3&ved=2ahUKEwj7qLnOmM6PAxXU6wIHHYRVJJsQgK4QegQIBRAE
https://www.google.com/search?q=baselines&oq=software+configuration+components&gs_lcrp=EgZjaHJvbWUqDggAEEUYJxg7GIAEGIoFMg4IABBFGCcYOxiABBiKBTIICAEQABgWGB4yCAgCEAAYFhgeMggIAxAAGBYYHjIICAQQABgWGB4yCAgFEAAYFhgeMggIBhAAGBYYHjIICAcQABgWGB4yCAgIEAAYFhgeMg0ICRAAGIYDGIAEGIoF0gEHNTc1ajBqN6gCALACAA&sourceid=chrome&ie=UTF-8&mstk=AUtExfBxaQUe5hEIxciMn_E2N-_-q2LVmuIRczzXtgJfVBPk66jo5mCe1JXzVDQ4Qw5TyJd-5dHykyYhEzHQ-SUC6W7__MKjKXHV7AvFrqc7JJ3KiU3Tz4-Aa6fXfCZRo0syzlNdOVWtoblwxl7wHU4gHUPkHEfpIk51HUxEco5BOfTmCyZpOMThAJMuR9sVkd71g8ZVKNLw6Uzah73r9FH6wH8K9DUr1z-s-lX8GSyrbefGG19dYert8wIZFKPF02rkNssb8gIPB3Zv8GLLKLO7VuYpm6mM89XkWKGfQWSOOq4CbTBdkQD_-8BV5WjNO2_50cnjrV5c7tTkegWV-s6qyqollcNyk7T15ewW-QdZeRUQg6azcy6ah0Um5jIBMU5cBA&csui=3&ved=2ahUKEwj7qLnOmM6PAxXU6wIHHYRVJJsQgK4QegQIBRAG
https://www.google.com/search?q=Configuration+Control&oq=software+configuration+components&gs_lcrp=EgZjaHJvbWUqDggAEEUYJxg7GIAEGIoFMg4IABBFGCcYOxiABBiKBTIICAEQABgWGB4yCAgCEAAYFhgeMggIAxAAGBYYHjIICAQQABgWGB4yCAgFEAAYFhgeMggIBhAAGBYYHjIICAcQABgWGB4yCAgIEAAYFhgeMg0ICRAAGIYDGIAEGIoF0gEHNTc1ajBqN6gCALACAA&sourceid=chrome&ie=UTF-8&mstk=AUtExfBxaQUe5hEIxciMn_E2N-_-q2LVmuIRczzXtgJfVBPk66jo5mCe1JXzVDQ4Qw5TyJd-5dHykyYhEzHQ-SUC6W7__MKjKXHV7AvFrqc7JJ3KiU3Tz4-Aa6fXfCZRo0syzlNdOVWtoblwxl7wHU4gHUPkHEfpIk51HUxEco5BOfTmCyZpOMThAJMuR9sVkd71g8ZVKNLw6Uzah73r9FH6wH8K9DUr1z-s-lX8GSyrbefGG19dYert8wIZFKPF02rkNssb8gIPB3Zv8GLLKLO7VuYpm6mM89XkWKGfQWSOOq4CbTBdkQD_-8BV5WjNO2_50cnjrV5c7tTkegWV-s6qyqollcNyk7T15ewW-QdZeRUQg6azcy6ah0Um5jIBMU5cBA&csui=3&ved=2ahUKEwj7qLnOmM6PAxXU6wIHHYRVJJsQgK4QegQIBRAI
https://www.google.com/search?q=Configuration+Status+Accounting&oq=software+configuration+components&gs_lcrp=EgZjaHJvbWUqDggAEEUYJxg7GIAEGIoFMg4IABBFGCcYOxiABBiKBTIICAEQABgWGB4yCAgCEAAYFhgeMggIAxAAGBYYHjIICAQQABgWGB4yCAgFEAAYFhgeMggIBhAAGBYYHjIICAcQABgWGB4yCAgIEAAYFhgeMg0ICRAAGIYDGIAEGIoF0gEHNTc1ajBqN6gCALACAA&sourceid=chrome&ie=UTF-8&mstk=AUtExfBxaQUe5hEIxciMn_E2N-_-q2LVmuIRczzXtgJfVBPk66jo5mCe1JXzVDQ4Qw5TyJd-5dHykyYhEzHQ-SUC6W7__MKjKXHV7AvFrqc7JJ3KiU3Tz4-Aa6fXfCZRo0syzlNdOVWtoblwxl7wHU4gHUPkHEfpIk51HUxEco5BOfTmCyZpOMThAJMuR9sVkd71g8ZVKNLw6Uzah73r9FH6wH8K9DUr1z-s-lX8GSyrbefGG19dYert8wIZFKPF02rkNssb8gIPB3Zv8GLLKLO7VuYpm6mM89XkWKGfQWSOOq4CbTBdkQD_-8BV5WjNO2_50cnjrV5c7tTkegWV-s6qyqollcNyk7T15ewW-QdZeRUQg6azcy6ah0Um5jIBMU5cBA&csui=3&ved=2ahUKEwj7qLnOmM6PAxXU6wIHHYRVJJsQgK4QegQIBRAN
https://www.google.com/search?q=Configuration+Auditing&oq=software+configuration+components&gs_lcrp=EgZjaHJvbWUqDggAEEUYJxg7GIAEGIoFMg4IABBFGCcYOxiABBiKBTIICAEQABgWGB4yCAgCEAAYFhgeMggIAxAAGBYYHjIICAQQABgWGB4yCAgFEAAYFhgeMggIBhAAGBYYHjIICAcQABgWGB4yCAgIEAAYFhgeMg0ICRAAGIYDGIAEGIoF0gEHNTc1ajBqN6gCALACAA&sourceid=chrome&ie=UTF-8&mstk=AUtExfBxaQUe5hEIxciMn_E2N-_-q2LVmuIRczzXtgJfVBPk66jo5mCe1JXzVDQ4Qw5TyJd-5dHykyYhEzHQ-SUC6W7__MKjKXHV7AvFrqc7JJ3KiU3Tz4-Aa6fXfCZRo0syzlNdOVWtoblwxl7wHU4gHUPkHEfpIk51HUxEco5BOfTmCyZpOMThAJMuR9sVkd71g8ZVKNLw6Uzah73r9FH6wH8K9DUr1z-s-lX8GSyrbefGG19dYert8wIZFKPF02rkNssb8gIPB3Zv8GLLKLO7VuYpm6mM89XkWKGfQWSOOq4CbTBdkQD_-8BV5WjNO2_50cnjrV5c7tTkegWV-s6qyqollcNyk7T15ewW-QdZeRUQg6azcy6ah0Um5jIBMU5cBA&csui=3&ved=2ahUKEwj7qLnOmM6PAxXU6wIHHYRVJJsQgK4QegQIBRAS

COMPUTER SOFTWARE INSTALLATION

REASON FOR SOFTWARE CONFIGURATION

Managing Change: Software is constantly updated and changed. Configuration management
provides a structured way to track and control these changes to the code, features, and other
components.

Ensuring Consistency: It establishes a standardized development environment, helping to
eliminate errors and ensure the software behaves consistently across different operating
systems and machines.

Enhancing Collaboration: With multiple developers and teams often working on a single
project, configuration management provides a central point for managing contributions,
preventing conflicts, and promoting efficient teamwork.

Version Control and Traceability: It creates a detailed history of changes, allowing
developers to track progress, understand the software's evolution, and revert to previous
versions if necessary.

Reducing Risks and Errors: By controlling the change process and ensuring proper testing,
software configuration helps identify and mitigate issues before they impact the final product,
minimizing system outages and other risks.

Supporting User and Policy Changes: It makes it easier to accommodate changes in user
requirements, business policies, and schedules, allowing the software to remain relevant and
effective.

Facilitating Deployment and Compliance: Configuration management tools can automate
builds and deployments, and they ensure the software meets industry standards and regulatory
requirements.

Optimizing Resource Usage: By providing a detailed understanding of all configuration
elements, it helps eliminate redundancy and ensures components work together efficiently,
which can also reduce costs.

Key Benefits and Importance of Software Configuration Management (SCM)

Ensures Consistency:SCM maintains consistency across different software environments
(e.g., development, testing, production) by ensuring everyone works with the same, authorized
versions of code and documentation.

Enhances Quality and Reliability:By tracking changes and integrating them correctly, SCM
helps prevent errors and ensures the software system is reliable and high-quality.

Facilitates Collaboration:SCM allows multiple developers to work on the same project
without conflicts, tracking changes and ensuring coordination among team members.
Improves Debugging and Troubleshooting:SCM provides a history of changes, making it
easier to identify when and how problems were introduced, which speeds up bug fixing.
Supports Efficient Deployment:It helps manage the configurations needed for deployment,
ensuring that software can be reliably delivered to users in the correct state.

Increases Security:SCM prevents unauthorized changes to the software, which strengthens
system security by controlling access and ensuring authorized modifications only.

Reduces Costs and Downtime:By minimizing errors and facilitating quicker recovery from
issues, SCM reduces costly downtime and optimizes the use of IT resources.

24

COMPUTER SOFTWARE INSTALLATION

Streamlines Auditing and Compliance:It provides a detailed record of all changes and
configurations, which is essential for meeting compliance requirements and conducting
effective audits.

Core SCM Processes

Establishment: Defining the configuration items (code, documentation, etc.) that make up a
software product at specific points in time.

Control: Managing different versions of a software product to track changes and allow for
rollbacks to previous states.

Control: A formal process for managing proposed changes to configuration items, involving
review, approval, and tracking.

Auditing: Verifying the completeness, correctness, and consistency of configuration items
against their specifications.

Reporting: Providing stakeholders with accurate status and configuration data through various
reports.

25

COMPUTER SOFTWARE INSTALLATION

Software installation testing

Software installation testing is the process of verifying that a software application is properly
installed, configured, updated, and uninstalled on a target system. Also known as
"Implementation testing," it focuses on the user's initial interaction with the software to ensure a
smooth and error-free experience across various environments and configurations.

Core aspects of installation testing

Initial installation: The testing ensures that the application can be installed successfully from
different sources (such as the internet, a CD, or a network) and that all required files and
components are placed in the correct directories.

System integrity: After installation, the testing checks for proper registration, correct file
associations, and accurate changes to system registry files, while also ensuring no other
programs are adversely affected.

Diverse environments: Testers check the installation process on a variety of operating systems
and hardware configurations. This ensures compatibility and reliability for the end-user.

User interaction: The process validates that the installer provides clear and accurate instructions,
handles user choices correctly (e.g., custom versus default installation), and displays appropriate
messages during and after installation.

Upgrade and patches: Testing also covers the process of updating the software, ensuring that
upgrades install correctly over a previous version and that all necessary files are properly
retained or updated.

Uninstallation: A critical part of installation testing is verifying that the application can be
completely and cleanly removed. This includes removing all files, folders, and registry entries
without leaving any residual data or affecting the performance of the system.

Negative testing: This involves testing what happens when the installation is interrupted, or when
system conditions are not ideal (e.g., insufficient disk space). Testers check that the software
handles these errors gracefully and can restore the system to its original state.

Why installation testing is important

Enhances user experience: The first impression a user has of a product is its installation. A
smooth, predictable, and simple process builds confidence and improves customer satisfaction
from the start.

Minimizes support costs: By catching and fixing installation-related bugs before the product is
released, companies can drastically reduce the number of support tickets and the associated
costs.

26

COMPUTER SOFTWARE INSTALLATION

Ensures system stability: Proper installation testing prevents problems like corrupted system
files, software conflicts, and other issues that can negatively impact a user's machine.

Protects brand reputation: A faulty or difficult installation process can lead to negative reviews,
frustrated users, and a damaged brand reputation, undermining a high-quality application

Techniques of Software Testing

Software testing techniques are systematic approaches used to ensure the quality, functionality,
and performance of a software application. These techniques can be broadly categorized into
dynamic and static testing, and within dynamic testing, further categorized into white box, black
box, and gray box testing.

1. Dynamic Testing Techniques:

Black Box Testing (Behavioral Testing):

This technique focuses on testing the functionality of the software without knowledge of its
internal structure or code. It aims to verify if the software meets the specified requirements and
behaves as expected from an end-user perspective. Common techniques include:

Equivalence Partitioning: Dividing input data into valid and invalid partitions and testing one
representative value from each partition.

Boundary Value Analysis (BVA): Testing the values at the boundaries of input ranges, as
errors often occur at these points.

Decision Table Testing: Creating tables to represent complex business logic and testing all
possible combinations of conditions and actions.

State Transition Testing: Testing how the software behaves when transitioning between
different states based on specific inputs.

Use Case Testing: Deriving test cases based on user scenarios and interactions with the
system.
White Box Testing (Structural Testing):

This technique involves testing the internal structure, design, and implementation of the
software. Testers have access to the source code and use this knowledge to design test cases
that cover all possible paths and conditions within the code. Common techniques include:

Statement Coverage: Ensuring that every line of code is executed at least once.

Decision Coverage (Branch Coverage): Ensuring that all possible outcomes of decision
points (e.g., if statements) are tested.

Condition Coverage: Testing all possible outcomes of individual conditions within a decision.

Multiple Condition Coverage: Testing all possible combinations of conditions within a
decision.

Gray Box Testing:

This technique combines elements of both black box and white box testing. Testers have some
knowledge of the internal structure (e.g., architecture, database design) but do not have full

27

COMPUTER SOFTWARE INSTALLATION

access to the source code. This allows for more informed testing than pure black box testing
while still maintaining a user-centric perspective.
2. Static Testing Techniques:

Static analysis: Analyzing the source code without executing it to identify potential defects,
coding standard violations, and structural issues. Techniques include:

Data Flow Analysis: Verifying data structures, variable definitions, and usage to identify
potential data-related issues.

Control Flow Analysis: Analyzing the control flow of the program to ensure the correctness of
process flows and functions.

Cyclomatic Complexity: Measuring the complexity of the code to identify areas that may be
difficult to test or maintain.
3. Experience-Based Testing:

Exploratory Testing:

Simultaneously designing and executing tests based on the tester's experience, intuition, and
understanding of the system.

Error Guessing:
Using past experience and knowledge of common error patterns to anticipate and test for
potential defects.

INSTALLATION CHECKLIST

An installation checklist is a structured list of steps and items to be verified or completed, used to
ensure a smooth, accurate, and error-free installation process for various products and systems,
such as electrical wiring, software, or machinery. Key elements include verifying requirements,
gathering necessary information, following installation procedures, checking work against
approved plans, and performing final testing and verification.

Steps to Create an Installation Checklist

Identify the Installation Type: Determine the specific system or product being installed, like
electrical components, software, or mechanical equipment.

Review Manufacturer Documentation: Consult manuals and documentation for detailed
installation steps and specific requirements.

Break Down the Installation Process: Divide the installation into logical phases, such as
planning, pre-installation, installation, and post-installation tasks.

List Key Tasks and Items: Create a comprehensive list of all necessary tasks and items that
need to be checked.

Include Verification Points: For each task, add specific points to verify, such as ensuring
correct parts are used or connections are tight.

28

COMPUTER SOFTWARE INSTALLATION

Incorporate Safety Checks: Add steps to review and follow safety precautions throughout the
process.

. Add Status Tracking: Include columns to track the status (e.g., "v/X") and record any relevant
comments or issues.

. Assign Responsibilities: For complex installations, assign specific roles or teams to certain
tasks.

Examples of Common Checklist Items

Electrical Installation: Verify correct conduit size, smooth bends, proper spacing of supports,
intact wire insulation, tight wire connections, and functional switching.

Software Installation: Ensure server hardware and operating system requirements are met,
necessary network ports are open, and data is backed up.

Mechanical Equipment: Check for proper mounting, secure connections, correct orientation,
and that vents are free from blockages.

General Installation: Confirm approved drawings have been followed, access to the site and
equipment is provided, and the installation meets all required specifications.

Functional software testing

Functional software testing is a quality assurance process that verifies a software application's
features and functions against its specified requirements. The goal is to ensure the software
behaves as expected from a user's perspective by checking inputs, outputs, and overall behavior.
This method is considered a form of "black-box testing,” where the internal code structure is not
the focus of the evaluation.

Functional vs. non-functional testing

Functional testing is distinct from non-functional testing, which assesses aspects like
performance, reliability, scalability, and usability.

Aspect Functional Testing Non-Functional Testing

Objective | To verify that the software does what it is | To evaluate how well the software
supposed to do, according to performs its functions under various
specifications. conditions.

Focus Specific features, user interactions, and Speed, security, reliability, scalability, and
business logic. usability.

Examples | A user can log in with valid credentials; a | The application can handle 1,000
product can be added to a shopping cart. | concurrent users; the website loads within

two seconds.

Types of functional testing

Functional testing includes several distinct types, which are often performed at different stages of
the software development lifecycle.

29

COMPUTER SOFTWARE INSTALLATION

Unit testing: Performed by developers to test individual components or modules of the software
in isolation.

Integration testing: Verifies that different modules or services work correctly together when
combined.

System testing: Tests the complete and integrated software system to ensure all components
work together as required.

User acceptance testing (UAT): Involves real end-users validating whether the software meets
their needs and requirements in a pre-production environment.

Regression testing: Re-runs functional tests after new code changes to ensure that existing
features have not been negatively affected.

Smoke testing: A preliminary, broad-stroke test to check the basic, critical functionality of an
application after a new build.

Sanity testing: A quick test to ensure that specific new functionalities or bug fixes work as
expected.

API testing: Verifies the functionality, reliability, and security of application programming
interfaces.

The functional testing process
A typical functional testing process follows these steps:

Requirement analysis: Understand and analyze the software's functional requirements from the
end-user's perspective.

Test planning: Develop a test strategy that includes the scope, approach, resources, and schedule.

Test case development: Create detailed test cases that outline the steps, data, and expected
outcomes for each functional scenario.

Test environment setup: Configure the necessary hardware and software to run the tests.

Test execution: Run the test cases and record the results, noting any discrepancies between actual
and expected outcomes.

Defect reporting and tracking: Identify, report, and track any bugs or issues discovered during
testing.

Test closure: Complete the testing cycle by reviewing test cases, documenting results, and
evaluating test coverage.

30

COMPUTER SOFTWARE INSTALLATION

Functional testing techniques

Several techniques are used to design effective functional test cases. These include
Boundary value analysis, which tests values at the limits of valid input;
Equivalence partitioning, which groups inputs into categories to reduce test cases;

Decision table testing, used for complex business rules by showing combinations of inputs and
outputs.

Exploratory testing, where testers investigate the application without predefined scripts, is
another technique.

Automation in functional testing

Functional testing can be performed manually or through automation tools. Automation is often
preferred for repetitive tasks and regression testing due to its efficiency and consistency.
Common automation tools include Selenium, Appium, and Playwright. Many organizations
adopt a hybrid approach, combining manual testing for certain scenarios with automated testing
for others

Functional testing checklist

1. Mainline functions

This involves testing the application's core functions and features to ensure they work as
intended.

Sign-up/Login:

Test account creation with valid and invalid data (e.g., existing email, incorrect password
format).

Verify login with correct credentials.

Confirm functionality of "forgot password" or account recovery features.
Search functionality:

Test searches with valid, invalid, and unrelated terms.

Confirm filters and sorting work correctly.

Database and data manipulation:

Validate that data submitted through forms is correctly stored in the database.
Test that data can be retrieved, updated, and deleted as expected.

End-to-end user flows:
31

COMPUTER SOFTWARE INSTALLATION

Verify that critical multi-step processes, like a complete checkout sequence on an e-commerce
site, work flawlessly.

2. usability

This aspect of functional testing confirms that users can navigate the system easily and that the
interface is intuitive.

Navigation:

Check that users can move freely between different screens and sections.

Confirm the back and forward buttons work as expected.

Readability and visual elements:

Verify that text, images, and other Ul elements are displayed correctly and are easy to read.
Responsiveness:

Confirm the application or website functions properly on different devices (e.g., mobile, tablet,
desktop).

Consistency:

Ensure the user interface, including buttons, forms, and menus, is consistent across the
application.

3. Accessibility

This testing ensures the system is usable for people with disabilities, following standards like the
Web Content Accessibility Guidelines (WCAG).

Keyboard navigation:

Verify that all interactive elements can be reached and operated using only the keyboard.
Confirm that there are no "keyboard traps” where a user cannot tab away from an element.
Screen reader compatibility:

Test with a screen reader (e.g., NVDA, VoiceOver) to ensure all content and interactive elements
are announced correctly.

Alternative text and captions:
Check that all meaningful images have accurate alt text.

Verify that videos have accurate closed captions or transcripts.

Color contrast:
32

COMPUTER SOFTWARE INSTALLATION

Use an analysis tool (like WAVE) to check that there is sufficient contrast between text and
background colors for readability.

Zoom functionality:
Confirm that the page layout remains usable and readable when the user zooms in up to 400%.

4. Error conditions

This verifies that the system handles errors and invalid inputs gracefully, providing appropriate
messages to the user.

Invalid data entry:

Test fields with incorrect data types (e.g., entering text in a number field) and check for proper
error messages.

Verify messages are helpful and explain what the user needs to correct.
System failures:

Simulate conditions like a lost network connection or a failed database transaction to see how the
application responds.

Boundary value analysis:

Test the boundaries of input fields (e.g., the minimum and maximum number of characters
allowed) to ensure correct validation.

Unauthorized actions:

Attempt to access restricted areas or perform actions without the necessary permissions and
verify that the correct error or access denied message is shown.

Generate test report

After executing the tests, a clear and comprehensive report must be generated. Here is a typical
structure.

Test report components

Report title and identification:

Project name

@)

o Version/build number

o Date of report creation

o Test environment details (OS, browser, etc.).
Test summary:

o Executive summary providing a high-level overview of the testing scope and outcomes.

33

COMPUTER SOFTWARE INSTALLATION

o Overall test status (e.g., Passed/Failed/In progress).
Key metrics, such as total test cases executed, passed, and failed.

Detailed test results:

o A breakdown of test results by functional area (mainline functions, usability,
accessibility, error conditions).

o Table listing each test case, its description, and its verdict (Pass/Fail).
Defect summary:

A summary of all defects identified, categorized by severity and priority. For each defect,
include details such as:

Defect ID

Severity (e.g., Critical, High, Medium, Low).
Description of the issue

Steps to reproduce

Date reported and current status.

o O O O O

Conclusion and recommendations:

o A conclusion assessing the overall quality of the tested application.
o Actionable recommendations for the development team, prioritizing the highest-severity
issues.

Supporting evidence:

o Include screenshots, logs, or links to defect tracking systems to provide context
for failed tests.

34

COMPUTER SOFTWARE INSTALLATION

Definition of term

e User training — it helps the user in operating the system in efficient way by
understanding the problem and how to solve it.

e Training program - an activity or activities that include undertaking one or a series of
courses to boost performance, productivity, skills, and knowledge of software.

e End User Training Plan — is one of the most important steps for a successful system
implementation where the end users should be utilized during parallel testing, so training
will need to be rolled out prior to that hence will make them excited about the system, as
many of them may not have been involved with the project prior to training.

e Delivery methods - is a standardized procedure for transferring the product or service to
the destination of fulfillment chosen by the customer.

e Training feedback - It helps learners to maximize their potential at different stages of
training, raise their awareness of strengths and areas for improvement, and identify
actions to be taken to improve performance.

Keys to successful implementation/ User training steps

1. Setting training goals your first objective in providing software training for end-users is
minimizing any productivity losses associated with the software transition. This means
you have to, as quickly as possible, get them up to the skill level required to do their jobs
at least as quickly and accurately as they were doing with the old software.

2. Assessing end-user needs an important element in creating your training plan is to
evaluate the technical skill level(s) of those who will use the software daily.

3. Training delivery methods

a. Individual hands-on instructor - It provides real-world experience by allowing
the trainee to get her hands directly on whatever she is learning, creating a
sense of empowerment.

b. Hands-on classroom style instructor-led training - This form of training can
have one or more instructors; and they teach skills or material to another
person or group through lectures, presentations, demonstrations, and
discussions.

c. Seminar style group demonstration - involves showing by reason or proof,
explaining or making clear by use of examples or experiments.

d. Computer Based Training (CBT) - involves the use of a personal or networked
computer for the delivery and access of training programs.

e. Book-based self-paced training - is defined as a specific learning method in
which the learner can control the amount of material they consume as well as
the duration of time they need to learn the new information properly.

4. Creating a training program End-user training is more effective and memorable if you
tailor it to your own organization's use of the software, rather than generic lessons.

5. Making your training program a scalable training program is flexible enough to
accommodate both small numbers of users (for example, when new employees join the

35

COMPUTER SOFTWARE INSTALLATION

company and need to be trained on the software) and large numbers (as is necessary in an
organization-wide rollout of a new product).

Useful tools in the planning stage

Creating a training program
Setting training goals
Training delivery methods
Assessing end-user needs

Key Reasons for End User Training

Increased Productivity and Efficiency:Well-trained users can work faster and smarter,
making fewer mistakes and requiring less time to figure out how to use software or systems.
Reduced Errors and Improved Accuracy:Training helps users input data correctly and follow
procedures, which improves the quality and accuracy of work and reduces errors.

Enhanced Security:Training educates users about potential threats and encourages compliance
with security protocols, strengthening the organization's security posture by turning employees
into a strong line of defense.

Lowered Support Costs:When users are proficient, they can often resolve their own issues,
leading to fewer support tickets and calls for assistance.

Better Technology Adoption and ROI:Users who understand a technology's value are more
likely to integrate it into their daily workflows, improving product adoption and maximizing
the return on the technology investment.

Higher User Confidence and Morale:Continuous training and learning opportunities help
users feel more confident in their abilities, which can lead to a more positive work
environment.

Faster Time to Value (TTV):Effective training quickly gets users set up to use a new product
or system successfully, shortening the time it takes for them to realize its benefits.

Stronger Security Posture: Training helps to prevent accidental data loss, theft, and malicious
interference from within the organization.

Improved Data Quality:Training provides the knowledge users need to input and manage data
accurately, leading to better decision-making.

Key Benefits

Boosts Productivity & Efficiency:Trained users understand how to use software effectively,
reducing time spent on tasks and allowing them to work faster and solve problems more
efficiently.

Reduces Errors & Support Costs:A greater understanding of new technology leads to fewer
mistakes and less need for technical support, freeing up IT teams to focus on other initiatives.
Increases ROI:Proper training maximizes the value of software and technology investments,
ensuring businesses get the best return on their capital.

36

COMPUTER SOFTWARE INSTALLATION

Enhances Cybersecurity:End users become a critical part of the security framework by
learning to identify and avoid phishing attacks, social engineering, and other threats, creating a
more resilient digital environment.

Improves User Confidence & Adoption:Training makes users feel more confident and
supported, reducing resistance to new technology and increasing its overall acceptance and use
within the organization.

Supports Strategic Goals:A technologically capable and well-trained workforce is better
positioned to meet strategic objectives and adapt to evolving business needs.

Ensures Compliance:Training helps organizations meet regulatory requirements for data
protection and privacy, mitigating the risk of penalties.

When to Prioritize End User Training

Implementing New Software:To speed up adoption and ensure users can effectively leverage
new systems, such as Enterprise Resource Planning (ERP) tools.

Introducing New Technologies: To help employees understand new functionalities and
collaborate more effectively using platforms like Microsoft 365.

Strengthening Cybersecurity:To build a cyber-responsible workforce and protect the
organization's assets from increasing threats.

Adapting to Evolving Landscapes:To keep employees informed about the latest cybersecurity
threats and strategies to combat them.

37

COMPUTER SOFTWARE INSTALLATION

Develop a software maintenance schedule

To develop a software maintenance schedule, first define clear maintenance goals,
then categorize and list all required tasks (corrective, adaptive, perfective,
preventive), prioritize these tasks based on criticality and business impact, and allocate
resources and schedule specific "*maintenance windows"" to minimize user disruption.
Finally, monitor performance, gather user feedback, and continuously evaluate and
refine the schedule for ongoing effectiveness.

1. Define Maintenance Goals & Scope

Set Objectives:Determine what you want to achieve, such as improving performance, fixing
bugs, enhancing features, or ensuring compatibility with new environments.

Identify All Software:Compile a list of all software requiring maintenance, as maintenance
plans can vary for different types of applications.

2. Identify and Categorize Tasks

Corrective Maintenance:Address existing faults and bugs in the software.

Adaptive Maintenance:Update software to adapt to changes in its operating environment,
such as new operating systems, browsers, or hardware.

Perfective Maintenance:Improve existing features, enhance performance, and implement new
functionalities based on user needs or new ideas.

Preventive Maintenance:Proactively perform tasks (like code optimization) to prevent future
problems, reduce technical debt, and extend the software's lifespan.

3. Prioritize Maintenance Tasks

Assess Impact:Determine the criticality of each task, considering its impact on users and
business operations.

Assign Priorities:Rank tasks from highest to lowest priority, focusing on urgent issues that
need immediate attention.

4. Create the Schedule

Allocate Resources:Ensure you have the necessary personnel, tools, and budget for the
planned activities.

Set Maintenance Windows:Schedule maintenance tasks during off-peak hours or planned
downtime to minimize disruption to users.

Develop a System:Establish a structured plan for performing and tracking tasks, potentially
using a maintenance management tool.

5. Monitor, Evaluate, and Refine

Track Performance:Implement monitoring tools to observe software performance and the
effectiveness of maintenance activities.

Gather Feedback:Create a feedback loop to collect input from users and stakeholders about
issues and areas for improvement.

Iterate:Regularly evaluate the schedule and make adjustments as needed to improve its
effectiveness, ensuring the software remains stable, efficient, and relevant over its lifecycl

38

https://www.google.com/search?q=Preventive+Maintenance&oq=Develop+software+maintenance+schedule&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQIRigATIHCAIQIRigATIHCAMQIRiPAjIHCAQQIRiPAtIBCDEzNDFqMGo3qAIAsAIA&sourceid=chrome&ie=UTF-8&mstk=AUtExfCC6sZf-9Zwz4P5a5J2KFWUbZjtPOe1U5mdLx2WO9yV8hZJ1RR3fx6Y1GnHQbkQEvIX6TV93i64OQ0K6BB2HtTUfGpo3-FCy3aU2VVeDMN4LxKmDy_Jbr4Yg8J30wxLQ8vA0OpvsZAu2da87l_vdNMfqKCwqCOK3cSfGIgiFeG9r4O-kut5P-LGbm28ClwgpW6IrQfLTGd1Oa6j2vN3IV_ePtJnaQ1I28orWyhGrwAtlP8vErAAEMauue7RDpryR6Jqwi9gvJhBxdOLviz5QRBN5uOIvLUvaL3kMaX5E_OU0WTFhi5venWFoxgLMs9wu6YhUujJUEIZWv8MgDHWFpOTP9JKtUF-Y8YxS0mdJzdfQJl5vST6ARpdorFELGwLlea7_XBOy4bACAgRiSaWvN3h7ebmOUpJzhsqihihgfn56vugZm5L-YfB_B0KCguoKTtl57nGN_lf7svtKlr-Iw&csui=3&ved=2ahUKEwjXva6Ros6PAxW83gIHHQWoHQUQgK4QegQIBRAH

COMPUTER SOFTWARE INSTALLATION

SOFTWARE EVALUATION

To evaluate software, first define clear needs, goals, and criteria like functionality, usability,
security, and cost. Then, gather input from stakeholders and compare different software
options by scoring them against the established criteria, often using demos or trials.

Finally, make an informed decision and document the evaluation to avoid costly mistakes and
ensure the chosen software aligns with business strategy and objectives.

Steps for Software Evaluation

Define Requirements and Goals

Identify User Needs: Gather input from stakeholders to understand pain points and desired
outcomes.

Set Clear Goals: Determine the specific objectives the software should achieve for the business
or project.

Establish Criteria: Create a list of key criteria for comparison, such as:

Functionality: Does it have the features you need?

Usability: Is it easy to use and learn?

Performance: How well does it run and scale?

Security: Are there adequate security measures?

Integration: Can it connect with your existing systems?

Cost-Effectiveness: What is the Total Cost of Ownership (TCO) and are there hidden fees?
Gather Input

Involve Stakeholders: Get input from users and other relevant team members to understand
their perspective on the software's features and usability.

Quantify Scores: Use a scoring system (e.g., 1-5) for each requirement to objectively assess
how well each software option performs.

Compare Software Options

Request Demos or Trials: Vendors often provide free demonstrations or trial periods, allowing
you to test multiple software options.

Standardize the Process: Develop a consistent evaluation process to ensure fair comparison
between different tools.

Make an Informed Decision

39

https://www.google.com/search?q=demos+or+trials&oq=Evaluate+the+software&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIKCAEQABiABBiiBDIKCAIQABiiBBiJBTIHCAMQABjvBdIBCDE1ODFqMGo3qAIAsAIA&sourceid=chrome&ie=UTF-8&mstk=AUtExfC2zR0IAFhIBcmBUPqXy_3Rul4YzTjIThi6Vkrs4WR-v5Dt9JOW_QSK1PyZt-BGbhvJFEDjpVwlW3gMwJsSpCt-6IS8HwIvTH_UqqJiTf0CNSTXtgCHk01Q7JkJTPgzceiV5IxfTy-PcuQKoKwIK36jU4qnyms9FStE7MIoztYC8GDw0gI7kBnC3LgkZq659FrtbPu184RJ4PzxMlmDKnWiGtXkS7onOsKBLpDoANEa28-sY-nDQSjDWeMbKumtG5vxSJoAyMMaazyTIgj8FT-ghuctJWL8NKwCKX3fbh-l-f5xaSDDcLy1oeztlwSMkFLPVQk8OttYnwGBegLNXIRGXYiD5wBXoorQwJe9nMXT6LCW6WkDHecFUOgJPscIl4YGThF1_662mZ2C7EECLqPYeAjNTUegHL5FelWuQARLvpeBW-eZIzuzfqNWnD6OciVHOCDBLp_EReF2xmvSJg&csui=3&ved=2ahUKEwiyuYX2os6PAxXb1AIHHQ_rOcMQgK4QegQIARAE

COMPUTER SOFTWARE INSTALLATION

Select the Best Fit: Choose the software that best meets your defined needs and criteria.

Document the Process: Keep records of the evaluation for future reference and to justify the
decision.

Why Software Evaluation is Important

Cost Savings: Avoid wasting money on software that doesn't meet your needs.

Improved Efficiency: Ensure the selected software optimizes operations rather than slowing
them down.

Alignment with Strategy: Select solutions that support your overall business strategy.
Enhanced Productivity: Choose software that improves user productivity and supports
innovation.

SOFTWARE MAINTENANCE PROCEDURE

To perform software maintenance, follow a seven-phase process: identify maintenance
requests, analyze these requests to understand their feasibility and impact, design the required
changes based on the original specifications, implement these changes by coding and adjusting
the software, conduct thorough system testing to verify the changes and ensure no new issues
were introduced, perform acceptance testing with end-users to confirm the solution meets
requirements, and finally, deliver the updated software to users along with comprehensive
documentation. This cycle applies to various maintenance types, including correcting bugs,
improving performance, and adapting the software to new environments.

The Software Maintenance Process

Problem/Change Identification: The process begins with identifying the need for maintenance,
whether it's a bug, a user request for an enhancement, or a performance issue.

. Analysis: All identified maintenance requests are analyzed to understand the changes needed,
the cost of implementing them, their impact on the system, and to decide if the changes are
feasible and authorized.

Design: Based on the analysis, a new design or framework is created for the required
modifications, ensuring it aligns with the original software requirements and specifications.

Implementation: The actual changes are made to the software by updating the code, adding new
features, or modifying existing modules according to the new design.

System Testing: The modified software is tested to ensure that the changes work correctly,
interact well with the system, and do not introduce new bugs or defects.

. Acceptance Testing: End-users test the modified software to verify that it meets the stated
requirements and functions as expected.

40

COMPUTER SOFTWARE INSTALLATION

Delivery: Once validated, the updated software is delivered to the end-users, often including
updated documentation, manuals, and help files describing the changes.

Types of Software Maintenance

Corrective Maintenance:Fixing errors or defects detected in the software after it has been
released.

Adaptive Maintenance: Modifying the software to adapt to changes in its operating
environment, such as new hardware or software systems.

Perfective Maintenance:Improving the software's functionality, performance, or usability by
adding new features or enhancing existing ones.

Preventive Maintenance:Proactively identifying and resolving potential problems before they
occur to maintain software health and prevent future issues

41

https://www.google.com/search?q=Corrective+Maintenance&sca_esv=e126eb4d051b0442&sxsrf=AE3TifNRL7kmpjM8YLqKS3Pd4fTCV3_q_Q%3A1757510121139&ei=6XnBaNeiCKm4i-gPlOaB4Ac&ved=2ahUKEwifmb6RqM6PAxXkBfsDHcuMOAkQgK4QegQIBxAB&uact=5&oq=Perform+software+maintenance+procedures&gs_lp=Egxnd3Mtd2l6LXNlcnAiJ1BlcmZvcm0gc29mdHdhcmUgbWFpbnRlbmFuY2UgcHJvY2VkdXJlczIIEAAYgAQYogQyCBAAGIAEGKIEMggQABiABBiiBDIIEAAYogQYiQUyCBAAGIAEGKIESNpJUKIwWK1BcAJ4AZABAJgBkQOgAckTqgEHMi04LjAuMbgBA8gBAPgBAZgCBqACzAjCAgoQABiwAxjWBBhHwgIKECEYoAEYwwQYCsICBxAjGLACGCfCAgUQABjvBZgDAIgGAZAGCJIHBTIuMC40oAfBK7IHAzItNLgHvgjCBwUwLjIuNMgHGQ&sclient=gws-wiz-serp&mstk=AUtExfCc-Dst8oH3qv1Zk9Rl80SaP4a-nAxcTdZwT1HM6TL2l3gqXeiq4T3FNPRQbljBblDe4e4peLxYf_eytr7fexZciGhOIffXc6w7iBVhkCCwYzWW49kuNvI5Pe-ZXdZh424Mysz4XwHP8PbtdHVx8u3XF75a0XU8pQxsYMw1J_mh8nM&csui=3
https://www.google.com/search?q=Adaptive+Maintenance&sca_esv=e126eb4d051b0442&sxsrf=AE3TifNRL7kmpjM8YLqKS3Pd4fTCV3_q_Q%3A1757510121139&ei=6XnBaNeiCKm4i-gPlOaB4Ac&ved=2ahUKEwifmb6RqM6PAxXkBfsDHcuMOAkQgK4QegQIBxAE&uact=5&oq=Perform+software+maintenance+procedures&gs_lp=Egxnd3Mtd2l6LXNlcnAiJ1BlcmZvcm0gc29mdHdhcmUgbWFpbnRlbmFuY2UgcHJvY2VkdXJlczIIEAAYgAQYogQyCBAAGIAEGKIEMggQABiABBiiBDIIEAAYogQYiQUyCBAAGIAEGKIESNpJUKIwWK1BcAJ4AZABAJgBkQOgAckTqgEHMi04LjAuMbgBA8gBAPgBAZgCBqACzAjCAgoQABiwAxjWBBhHwgIKECEYoAEYwwQYCsICBxAjGLACGCfCAgUQABjvBZgDAIgGAZAGCJIHBTIuMC40oAfBK7IHAzItNLgHvgjCBwUwLjIuNMgHGQ&sclient=gws-wiz-serp&mstk=AUtExfCc-Dst8oH3qv1Zk9Rl80SaP4a-nAxcTdZwT1HM6TL2l3gqXeiq4T3FNPRQbljBblDe4e4peLxYf_eytr7fexZciGhOIffXc6w7iBVhkCCwYzWW49kuNvI5Pe-ZXdZh424Mysz4XwHP8PbtdHVx8u3XF75a0XU8pQxsYMw1J_mh8nM&csui=3
https://www.google.com/search?q=Perfective+Maintenance&sca_esv=e126eb4d051b0442&sxsrf=AE3TifNRL7kmpjM8YLqKS3Pd4fTCV3_q_Q%3A1757510121139&ei=6XnBaNeiCKm4i-gPlOaB4Ac&ved=2ahUKEwifmb6RqM6PAxXkBfsDHcuMOAkQgK4QegQIBxAH&uact=5&oq=Perform+software+maintenance+procedures&gs_lp=Egxnd3Mtd2l6LXNlcnAiJ1BlcmZvcm0gc29mdHdhcmUgbWFpbnRlbmFuY2UgcHJvY2VkdXJlczIIEAAYgAQYogQyCBAAGIAEGKIEMggQABiABBiiBDIIEAAYogQYiQUyCBAAGIAEGKIESNpJUKIwWK1BcAJ4AZABAJgBkQOgAckTqgEHMi04LjAuMbgBA8gBAPgBAZgCBqACzAjCAgoQABiwAxjWBBhHwgIKECEYoAEYwwQYCsICBxAjGLACGCfCAgUQABjvBZgDAIgGAZAGCJIHBTIuMC40oAfBK7IHAzItNLgHvgjCBwUwLjIuNMgHGQ&sclient=gws-wiz-serp&mstk=AUtExfCc-Dst8oH3qv1Zk9Rl80SaP4a-nAxcTdZwT1HM6TL2l3gqXeiq4T3FNPRQbljBblDe4e4peLxYf_eytr7fexZciGhOIffXc6w7iBVhkCCwYzWW49kuNvI5Pe-ZXdZh424Mysz4XwHP8PbtdHVx8u3XF75a0XU8pQxsYMw1J_mh8nM&csui=3
https://www.google.com/search?q=Preventive+Maintenance&sca_esv=e126eb4d051b0442&sxsrf=AE3TifNRL7kmpjM8YLqKS3Pd4fTCV3_q_Q%3A1757510121139&ei=6XnBaNeiCKm4i-gPlOaB4Ac&ved=2ahUKEwifmb6RqM6PAxXkBfsDHcuMOAkQgK4QegQIBxAK&uact=5&oq=Perform+software+maintenance+procedures&gs_lp=Egxnd3Mtd2l6LXNlcnAiJ1BlcmZvcm0gc29mdHdhcmUgbWFpbnRlbmFuY2UgcHJvY2VkdXJlczIIEAAYgAQYogQyCBAAGIAEGKIEMggQABiABBiiBDIIEAAYogQYiQUyCBAAGIAEGKIESNpJUKIwWK1BcAJ4AZABAJgBkQOgAckTqgEHMi04LjAuMbgBA8gBAPgBAZgCBqACzAjCAgoQABiwAxjWBBhHwgIKECEYoAEYwwQYCsICBxAjGLACGCfCAgUQABjvBZgDAIgGAZAGCJIHBTIuMC40oAfBK7IHAzItNLgHvgjCBwUwLjIuNMgHGQ&sclient=gws-wiz-serp&mstk=AUtExfCc-Dst8oH3qv1Zk9Rl80SaP4a-nAxcTdZwT1HM6TL2l3gqXeiq4T3FNPRQbljBblDe4e4peLxYf_eytr7fexZciGhOIffXc6w7iBVhkCCwYzWW49kuNvI5Pe-ZXdZh424Mysz4XwHP8PbtdHVx8u3XF75a0XU8pQxsYMw1J_mh8nM&csui=3

	TOPIC 1: INTRODUCTION TO SOFTWARE INSTALLATION
	IDENTIFICATION OF SOFTWARE TO BE INSTALLED
	Software
	Classification of Software
	Criteria for Software Selection
	Software Acquisition Methods
	Operating Systems
	Types of Operating Systems
	Types of operating system interfaces

	TOPIC 2: INSTALL COMPUTER SOFTWARE
	Software installation
	Installation media
	Types of software installations
	Software installation legal requirements
	Software installation and registration
	Software registration
	Software registration (1)
	Software configuration
	IMPORTANCE OF SOFTWARE REGISTRATION

	TOPIC 3: SOFTWARE CONFIGURATION MANAGEMENT
	REASON FOR SOFTWARE CONFIGURATION
	Key Benefits and Importance of Software Configuration Management (SCM)
	Software installation testing
	Techniques of Software Testing
	INSTALLATION CHECKLIST
	Types of functional testing
	Functional testing techniques
	Functional testing checklist

	TOPIC 5: PERFORM USER TRAINING
	Definition of term
	Keys to successful implementation/ User training steps
	Key Reasons for End User Training

	TOPIC 6: PERFORM SOFTWARE MAINTENANCE
	Develop a software maintenance schedule
	SOFTWARE EVALUATION
	SOFTWARE MAINTENANCE PROCEDURE
	Types of Software Maintenance

